

Chongqing University of Technology

HyConvE: A Novel Embedding Model for Knowledge Hypergraph

Link Prediction with Convolutional Neural Networks

Chenxu Wang Xin Wang* Zhao Li College of Intelligence and College of Intelligence and College of Intelligence and Computing Computing Computing **Tianjin University Tianjin University Tianjin University** Tianjin, China Tianjin, China Tianjin, China Tianjin Key Laboratory of Cognitive Tianjin Key Laboratory of Cognitive Tianjin Key Laboratory of Cognitive Computing and Application Computing and Application Computing and Application Tianjin, China Tianjin, China Tianjin, China cxwang1998@tju.edu.cn wangx@tju.edu.cn lizh@tju.edu.cn Zirui Chen Jianxin Li

College of Intelligence and Computing Tianjin University Tianjin, China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin, China zrchen@tju.edu.cn Jianxin Li School of Information Technology Deakin University Geelong, Victoria, Australia jianxin.li@deakin.edu.cn

https://github.com/CarllllWang/HyConvE/tree/master

—— WWW 2023

Chongqing University of Technology

1.Introduction

2.Method

3.Experiments

Introduction

The knowledge hypergraph link prediction task aims at **predicting missing component** in n-ary facts, where the missing component can be either an entity in the tuple $r(e_1, e_2, ..., ?, ..., e_k)$ or a n-ary relation ?($e_1, e_2, ..., e_k$).

Tuple

KidsOf (Jeffrey Jordan, Marcus Jordan, Jeffrey Jordan) BestHelper (Scottie Pippen, Michael Jordan, 1998) PlayRoleIn (Michael Jordan, Scoring Guard, Chicago Bulls)

Introduction

Due to the exponential growth of multi source information, it becomes challenging, even impossible, for the large-scale n-ary knowledge base to be updated in an appropriate way, resulting in incomplete and outdated knowledge hypergraphs.

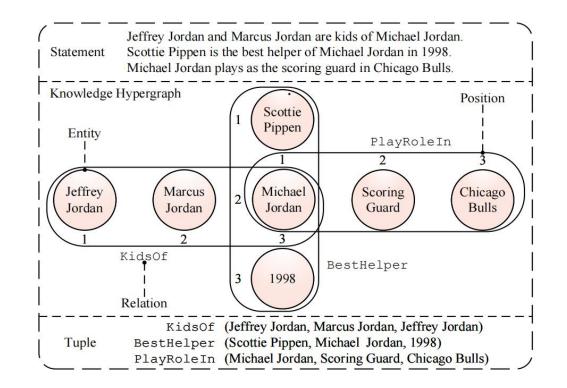


Figure 1: A real-world example of knowledge hypergraph about a set of facts related to *Michael Jordan*, where each tuple is accompanied by different positional information.

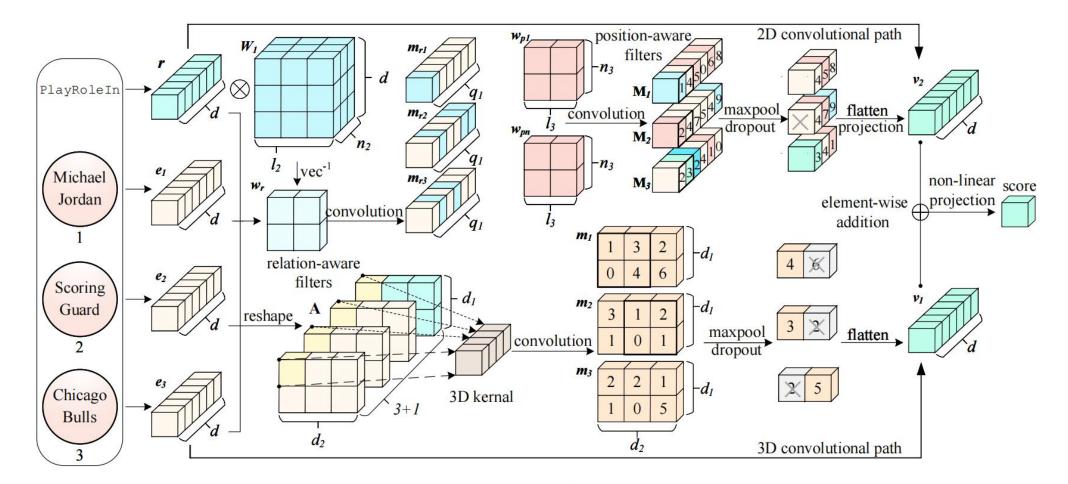


Figure 2: The framework of the HyConvE model.

Method

$$w_{r} = \operatorname{vec}^{-1}(r \cdot W_{1})$$

$$w_{v$$

(1) $\overline{r} \in \mathbb{R}^{d_1 \times d_2}$ $\overline{e_i} \in \mathbb{R}^{d_1 \times d_2}$ $A = [\overline{r} || \overline{e_1}, ..., || \overline{e_k}] \in \mathbb{R}^{(k+1) \times d_1 \times d_2}$ $m_i = w_i * \mathbf{A} + b = w * [\overline{r} || \overline{e_1}, ..., || \overline{e_k}] + b$

 $v_1 = \max pool(w * [\overline{r} || \overline{e_1}, ..., || \overline{e_k}])$

(2)

Method

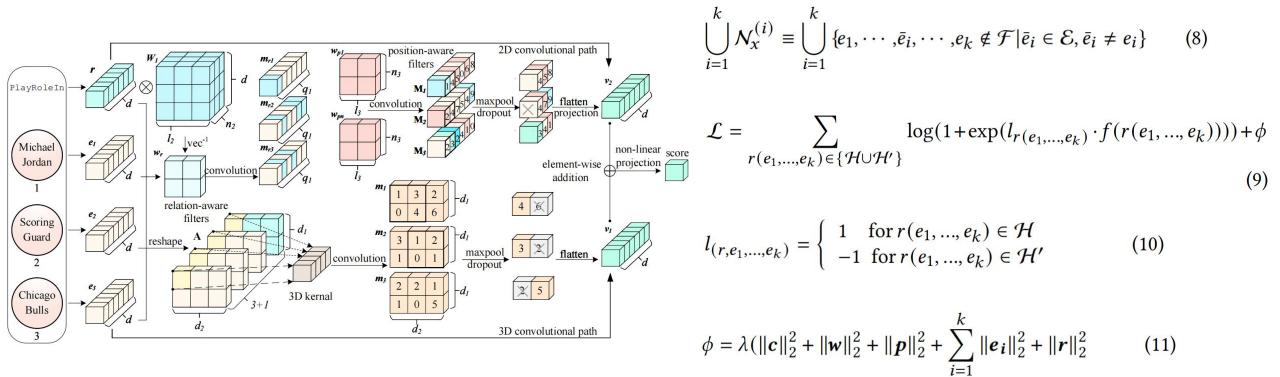


Table 1: Dataset Statistics. The size of the train, valid, and test columns represent the number of triples or tuples, respectively. "Arity" denotes the involved arities of relations.

Dataset	3	$ \mathcal{R} $	Arity	# train	# valid	# test	# arity=2	# arity=3	# arity=4	# arity \geq 5
FB15k-237	14, 541	237	2	272, 115	17, 535	20, 466	310, 116	17 111 1	—	
WN18RR	40, 943	11	2	86, 835	3,034	3, 134	93, 003	_	- <u></u>	_
JF17K	29, 177	327	2-6	61, 104	15, 275	24, 568	56, 332	34, 550	9, 509	2, 267
WikiPeople	47, 765	707	2-9	305, 725	38, 223	38, 281	337, 914	25, 820	15, 188	3, 307
FB-AUTO	3, 388	8	2, 4, 5	6,778	2,255	2, 180	3, 786	-	125	7, 212
JF17K-3	11, 541	104	3	27,645	3,454	3, 455	-	34, 544	-	-
JF17K-4	6, 536	23	4	7,607	951	951	-	-	9509	
WikiPeople-3	12, 270	66	3	20,656	2,582	2, 582	_	25, 820		
WikiPeople-4	9, 528	50	4	12, 150	1, 519	1, 519	_	-	15188	-

Table 2: Results of Link Prediction on Knowledge Hypergraph Datasets. The best results are in boldface and the second best are underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental results are obtained locally.

Model		Л	F17K			Wik	iPeople		FB-AUTO				
widder	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	
RAE [41]	0.392	0.312	0.433	0.561	0.253	0.118	0.343	0.463	0.703	0.614	0.764	0.854	
NaLP [15]	0.310	0.239	0.334	0.450	0.338	0.272	0.362	0.466	0.672	0.611	0.712	0.774	
HINGE[28]	0.473	0.397	0.490	0.618	0.333	0.259	0.361	0.477	0.678	0.630	0.706	0.765	
NeuInfer [14]	0.451	0.373	0.484	0.604	0.351	0.274	0.381	0.467	0.737	0.700	0.755	0.805	
HypE [10]	0.494	0.399	0.532	0.650	0.263	0.127	0.355	0.486	0.804	0.774	0.824	0.856	
tNaLP+ [13]	0.449	0.370	0.484	0.598	0.339	0.269	0.369	0.473	0.729	0.645	0.748	0.826	
S2S [8]	0.528	0.457	0.570	0.690	0.364	0.273	0.402	0.503	-	-	-	-	
RAM [22]	0.539	0.463	0.572	0.690	0.363	0.271	0.405	0.500	0.830	0.803	0.851	0.876	
HyConvE (ours)	0.590	0.478	0.610	0.729	0.362	0.275	0.388	0.501	0.847	0.820	0.872	0.901	

A TA I Advanced Technique of Artificial Intelligence

Experiments

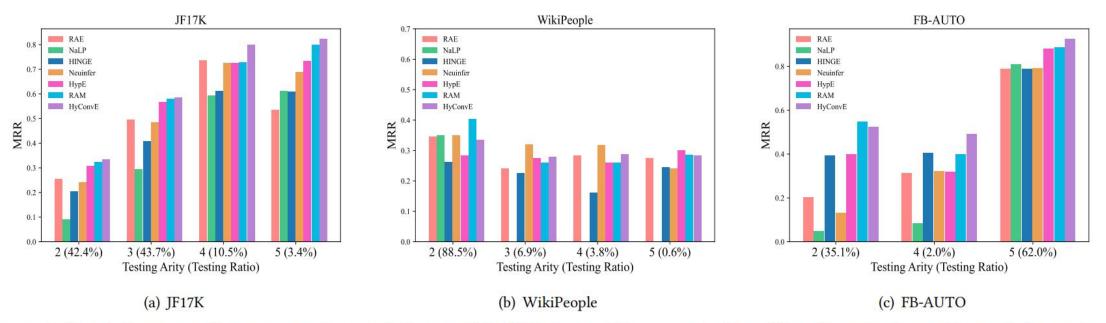


Figure 3: Breakdown performance across relations with different arities. *x*-axis identifies the relation arity and the ratio of testing samples. 6-ary relational facts and beyond are few and unreliable, thus not reported.

Table 3: Results on fixed arity datasets. The best results are in **boldface** and the second best are underlined.

Model		JF17K-:	3		JF17K-	4	V	WikiPeop	le-3	WikiPeople-4			
Widder	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	
RAE [41]	0.505	0.430	0.644	0.707	0.636	0.835	0.239	0.168	0.379	0.150	0.080	0.273	
NaLP [15]	0.515	0.431	0.679	0.719	0.673	0.805	0.301	0.226	0.445	0.342	0.237	0.540	
n-CP [21]	0.669	0.613	0.801	0.754	0.701	0.855	0.313	0.237	0.476	0.253	0.163	0.432	
n-tucker [21]	0.727	0.664	0.852	0.786	0.723	0.851	0.315	0.236	0.478	0.335	0.225	0.536	
GETD [21]	0.725	0.660	0.858	0.822	0.761	0.924	0.363	0.272	0.545	0.346	0.229	0.542	
RAM [22]	0.578	0.505	0.722	0.743	0.701	0.845	0.254	0.190	0.383	0.226	0.161	0.367	
HyConvE (ours)	0.729	0.670	0.861	0.827	0.770	0.931	0.318	0.240	0.482	0.386	0.271	0.607	

Table 4: Results of Link Prediction on Knowledge Graph Datasets. The best results are in boldface and the second best are underlined. Experimental results with "-" are those results that were not presented in the original paper. All experimental results are obtained locally.

Model		FB15k-	237	WN18RR			JF17K			V	VikiPe	ople	FB-AUTO		
	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10
TransE [5]	0.294	-	0.561	0.226	-	0.501	0.276	0.167	0.495	0.312	0.146	0.574	0.313	0.132	0.562
DistMult[28]	0.241	0.155	0.419	0.431	0.390	0.490	0.228	0.144	0.411	0.275	0.193	0.388	0.494	0.444	0.566
ComplEx [14]	0.253	0.158	0.428	0.440	0.411	0.512	0.308	0.219	0.498	0.326	0.232	0.461	0.487	0.442	0.568
HypE [10]	0.240	0.160	0.400	0.363	0.332	0.473	-	-	=	-	-	-	-	-	-
S2S [8]	0.348	0.256	0.540	0.498	0.455	0.577	-		-	_	-	-	8 - -	-	-
RAM [22]	-	-	- 0	-	-	-	0.324	0.232	0.515	0.408	0.313	0.568	0.489	0.444	0.576
HyConvE (ours)	0.339	0.212	0.458	0.461	0.432	0.534	0.338	0.246	0.525	0.388	0.281	0.556	0.493	0.445	0.572

ATAI Advanced Technique of Artificial Intelligence

Table 5: Results of ablation study. The best results are in **boldface**. HyConvE-path1-only means to use only the 3D path of HyConvE when conducting experiments and HyConvE-path2-only means the other.

Model	JF17K					Wik	iPeople		FB- AUTO				
	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	MRR	Hit@1	Hit@3	Hit@10	
HyConvE-path1-only	0.528	0.457	0.570	0.690	0.323	0.227	0.344	0.478	0.831	0.796	0.851	0.899	
HyConvE-path2-only	0.102	0.054	0.094	0.168	0.072	0.048	0.094	0.172	0.145	0.082	0.164	0.212	
HyConvE (ours)	0.590	0.478	0.610	0.729	0.352	0.275	0.388	0.501	0.847	0.820	0.872	0.901	

Thank you!